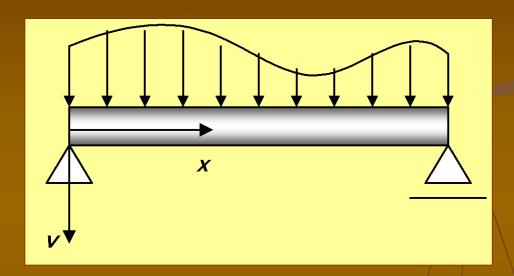
Mechanics Thin Structure

Mechanics of Thin Structure

What you learned are;

Introduction for Linear Elasticity
Stress and Strain with 3D General Expressions
Plane Stress and Plane Strain
Principle of Energy
Principle of Virtual Work
Calculus of Variations
Theory of Beams
Theory of Plates



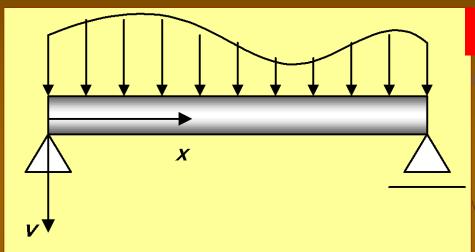
Solve the problem

Equilibrium

Compatibility

Energy

Governing Equation



Solve the problem

Equilibrium

Compatibility

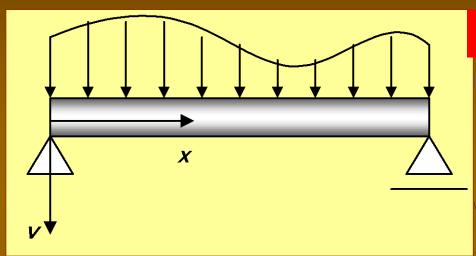
Vertical

$$-\frac{dQ}{dx} - q(x) = 0$$

Moment

$$-\left(Q + \frac{\partial Q}{\partial x} dx\right) dx - q(x) dx \frac{dx}{2} + \frac{\partial M}{\partial x} dx = 0$$

$$\frac{dM}{dx} = Q \left[\frac{d^2M}{dx^2} = -q(x) \right]$$



Solve the problem

Equilibrium

Compatibility

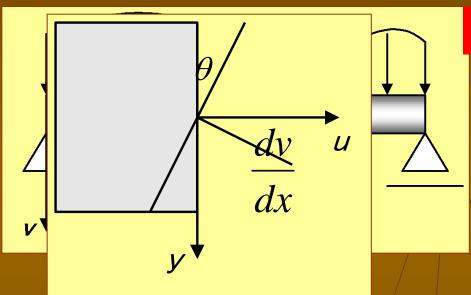
$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} = 0$$

X direction

$$\int_{-h/2}^{h/2} \frac{\partial \sigma_x}{\partial x} z dz + \int_{-h/2}^{h/2} \frac{\partial \tau_{yx}}{\partial y} z dz + \int_{-h/2}^{h/2} \frac{\partial \tau_{zx}}{\partial z} z dz = 0$$

$$\left| \int_{-h/2}^{h/2} \frac{\partial \tau_{zx}}{\partial z} z dz = \tau_{zx} z \Big|_{-h/2}^{h/2} - \int_{-h/2}^{h/2} \tau_{zx} dz \right|$$

$$Q_x = \frac{dM_x}{dx}$$



Solve the problem

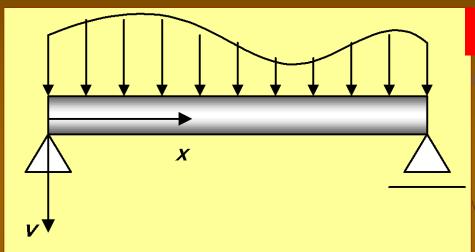
Equilibrium

Compatibility

$$u(y) = -y\theta = -y\frac{dv}{dx}$$

$$\varepsilon_{x}(y) = \frac{du}{dx} = -y\frac{d^{2}v}{dx^{2}}$$

$$M_{x} = \int_{A} E \varepsilon_{x} y dA = \int_{A} E \left(-y \frac{d^{2} v}{dx^{2}}\right) y dA = -EI \frac{d^{2} v}{dx^{2}}$$



Solve the problem

Equilibrium

Compatibility

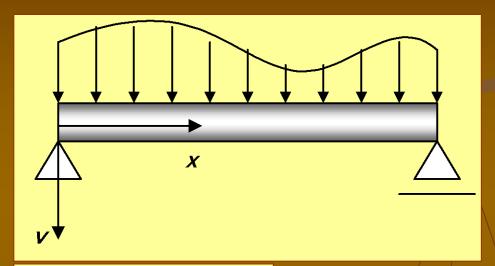
$$\frac{d^2M}{dx^2} = -q(x)$$

$$\frac{d^2M}{dx^2} = -q(x)$$

$$M_x = \int_A E\varepsilon_x y dA = \int_A E\left(-y\frac{d^2v}{dx^2}\right) y dA = -EI\frac{d^2v}{dx^2}$$

Governing Equation

$$EI\frac{d^4v}{dx^4} - q(x) = 0$$

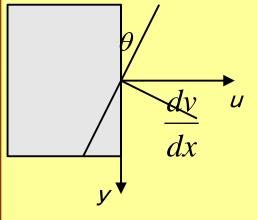


Compatibility

Energy

$$u(y) = -y\theta = -y\frac{dv}{dx}$$

$$\varepsilon_{x}(y) = \frac{du}{dx} = -y \frac{d^{2}v}{dx^{2}}$$

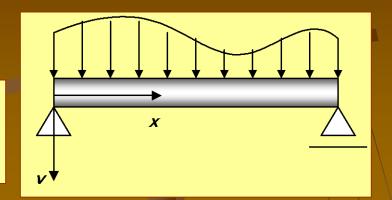


Energy should be Minimum, so that Energy is calcualted such as;

Energy for section

$$\int \frac{1}{2} \sigma_{x} \varepsilon_{x} b dy$$

$$\int \frac{1}{2} \sigma_x \varepsilon_x b dy \qquad \varepsilon_x(y) = \frac{du}{dx} = -y \frac{d^2 v}{dx^2}$$

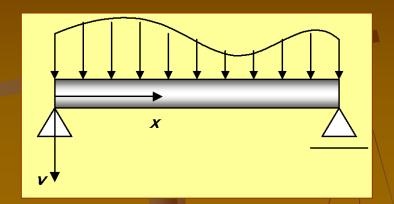


$$U = \int_0^l \left(\int \frac{1}{2} \sigma_x \varepsilon_x b dy \right) dx = \int_0^l \left(\int \frac{1}{2} E \varepsilon_x^2 b dy \right) dx$$

$$= \int_0^l \int \frac{1}{2} E y^2 \left(\frac{d^2 v}{dx^2}\right)^2 b dy dx = \frac{EI}{2} \int_0^l \left(\frac{d^2 v}{dx^2}\right)^2 dx$$

Potential Energy

$$W = \int_0^l q(x)v dx$$



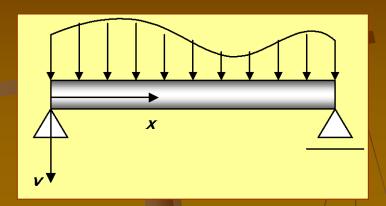
$$\Pi = U - W = \int_0^l \left| \frac{EI}{2} \left(\frac{d^2 v}{dx^2} \right)^2 - q(x)v \right| dx$$

You have the Functional!!

$$\Pi = J[v] = \int_0^l F(x, v, v'') dx$$

You have the Functional !!

$$\left|\Pi = J[v] = \int_0^l F(x, v, v'') dx\right|$$

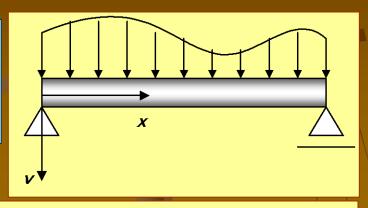


$$\left| \Pi = U - W = \int_0^l \left| \frac{EI}{2} (v'')^2 - q(x)v \right| dx \right|$$

Apply the Euler's Equation

$$\frac{\partial F}{\partial v} - \frac{d}{dx} \left(\frac{\partial F}{\partial v'} \right) + \frac{d^2}{dx^2} \left(\frac{\partial F}{\partial v''} \right) = 0$$

$$\frac{\partial F}{\partial v} - \frac{d}{dx} \left(\frac{\partial F}{\partial v'} \right) + \frac{d^2}{dx^2} \left(\frac{\partial F}{\partial v''} \right) = 0$$



$$\frac{\partial F}{\partial v} = -q \left| \frac{\partial F}{\partial v} \right|$$

$$\left| \frac{\partial F}{\partial v'} = 0 \right|$$

$$\frac{\partial F}{\partial v''} = EIv''$$

$$\frac{\partial F}{\partial v} = -q \left[\frac{\partial F}{\partial v'} = 0 \right] \frac{\partial F}{\partial v''} = EIv'' \left[\Pi = \int_0^1 \left[\frac{EI}{2} (v'')^2 - q(x)v \right] dx \right]$$

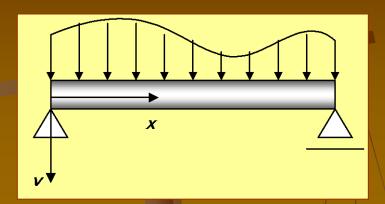
$$-q + \frac{d^2}{dx^2} (EIv'') = EI \frac{d^4v}{dx^4} - q = 0$$

Governing Equation for pure bending beam

from the Euler's Equation

Boundary Condition

See eq. (6-31)



$$\frac{\partial F}{\partial v'} - \frac{d}{dx} \left(\frac{\partial F}{\partial v''} \right) = -\frac{d}{dx} (EIv'') = Q_x$$
 Shearing force

 δv

$$\frac{\partial F}{\partial v''} = EIv'' = -M_{x}$$

Bending Moment

$$\delta v' = \delta \frac{dv}{dx} = \delta \theta$$

Mechanical Boundary Condition		Geometrical Boundary Condition
Q_{x}	or	$\delta v' = \delta \frac{dv}{dx} = \delta \theta$
M_{χ}	or	<u>Sv</u>

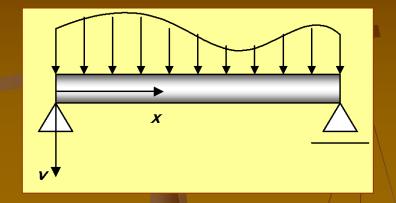
$$\left| \delta J = Q_x \delta v \right|_{x_1}^{x_2} - M_x \delta \theta \Big|_{x_1}^{x_2} + \int_{x_1}^{x_2} \left\{ \frac{d^2}{dx^2} \left(E I v'' \right) - q \right\} \delta v dx \right|$$

Example Solution 1 : Direct Integration

$$EI\frac{d^4v}{dx^4} - q = 0$$

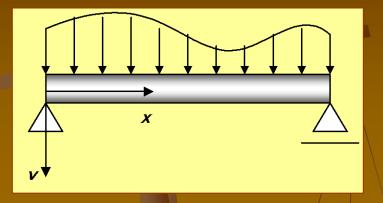
$$EI\frac{d^3v}{dx^3} = \int_{x} q(x)dx + C_1$$

$$EI\frac{d^2v}{dx^2} = \iint_{x} q(x)dxdx + C_1x + C_2$$



$$\frac{5}{384} \frac{qL^4}{EI} = 0.01302$$

$$EI\frac{d^4v}{dx^4} - q = 0$$
 Equilibrium

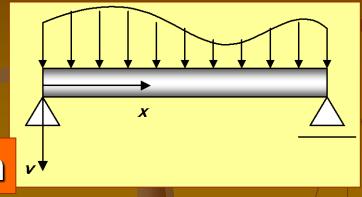


No Energy produced if the Equilibrium is satisfied

$$\int_{x} \left\{ EI \frac{d^{4}v}{dx^{4}} - q \right\} \delta v dx = 0$$
Virtual Displacement
Virtual Work

What is the requirement for the virtual displacement?

$$\int_{x} \left\{ EI \frac{d^{4}v}{dx^{4}} - q \right\} \delta v dx = 0$$

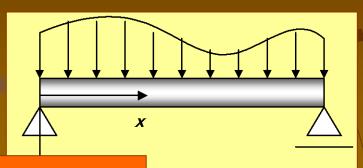


$$\widetilde{v} = a \sin\left(\frac{\pi}{L}x\right)$$
 Assumption

$$EI\left(\frac{\pi}{L}\right)^{4} \int_{x} \left\{ a \sin\left(\frac{\pi}{L}x\right) \right\} \delta v dx - \int_{x} q \delta v dx = 0$$

$$\delta v = \sin\left(\frac{\pi}{L}x\right)$$
 Virtual Displacement

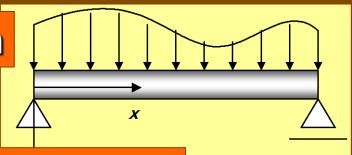
$$\tilde{v} = a \sin\left(\frac{\pi}{L}x\right)$$
 Assumption



$$\delta v = \sin\left(\frac{\pi}{L}x\right)$$

$$EI\left(\frac{\pi}{L}\right)^{4} a \int_{x}^{1} \frac{1}{2} \left\{ 1 - \cos\left(2\frac{\pi}{L}x\right) \right\} dx - \int_{x}^{2} q \left\{ \sin\left(\frac{\pi}{L}x\right) \right\} dx = 0$$

$$\widetilde{v} = a \sin\left(\frac{\pi}{L}x\right)$$
 Assumption



$$\delta v = \sin\left(\frac{\pi}{L}x\right)$$

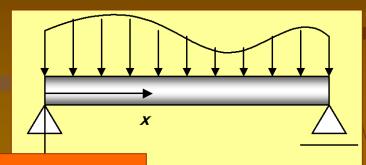
$$EI \frac{1}{2} aEI \left(\frac{\pi}{L}\right)^4 L - 2q \left(\frac{L}{\pi}\right) = 0 dx - a = 4 \frac{q}{EI} \left(\frac{L^4}{\pi^5}\right) x = 0$$

$$a \approx \frac{4}{306} \frac{qL^4}{EI} = 0.01307 \frac{qL^4}{EI}$$
 $= \frac{5}{384} \frac{qL^4}{EI} = 0.01302 \frac{qL^4}{EI}$

$$\frac{5}{384} \frac{qL^4}{EI} = 0.01302 \frac{qL^4}{EI}$$

Example Solution 2 modified

$$\int_{x} \left\{ EI \frac{d^{4}v}{dx^{4}} - q \right\} \delta v dx = 0$$



$$\widetilde{v} = \sum_{m} a_{m} \sin\left(\frac{m\pi}{L}x\right)$$
 Assumption

$$\left| \sum_{m} EI \left(\frac{m\pi}{L} \right)^{4} \int_{x} \left\{ a_{m} \sin \left(\frac{m\pi}{L} x \right) \right\} \delta v dx - \int_{x} q \delta v dx = 0$$

$$\delta v_n = \sin\left(\frac{n\pi}{L}x\right)$$

Example Solution 2 modified

$$\left| \sum_{m} EI \left(\frac{m\pi}{L} \right)^{4} \int_{x} \left\{ a_{m} \sin \left(\frac{m\pi}{L} x \right) \right\} \delta v dx - \int_{x} q \delta v dx = 0$$

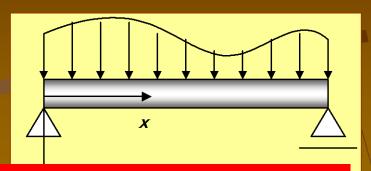
$$\delta v_n = \sin\left(\frac{n\pi}{L}x\right) \int_{x}^{q} q\sin\left(\frac{n\pi}{L}x\right) dx$$
Fourier Transform

$$\left| \sum_{m} EI \left(\frac{m\pi}{L} \right)^{4} \int_{x} \left\{ a_{m} \sin \left(\frac{m\pi}{L} x \right) \right\} \sin \left(\frac{n\pi}{L} x \right) dx - \int_{x} q \sin \left(\frac{n\pi}{L} x \right) dx = 0$$

It's same as the solution introduced for Plate Theory

Example Solution 3 : Point Collocation

$$\int_{x} \left\{ EI \frac{d^{4}v}{dx^{4}} - q \right\} \delta v dx = 0$$



Assume you would like to have the value at the center

$$\delta v = \delta \left(\frac{L}{2} \right)$$

 $\delta v = \delta \left(\frac{L}{2} \right)$ Dirac Delta Function

$$\left| \mathcal{S} \left(L \right) \int_{x} \left\{ EI \frac{d^4 v}{dx^4} - q \right\} \mathcal{S} dx = \left[EI \frac{d^4 v}{dx^4} - q \right]_{x = L/2}$$

Example Solution 3: Point Collocation

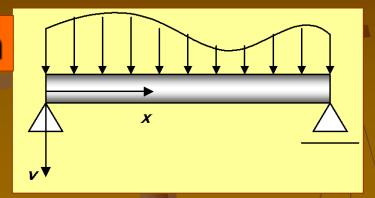
$$\int_{x} \left\{ EI \frac{d^4v}{dx^4} - q \right\} \delta dx = \left[EI \frac{d^4v}{dx^4} - q \right]_{x=L/2} = 0$$

$$\widetilde{v} = a \sin\left(\frac{\pi}{L}x\right)$$
 Assumption

$$\begin{bmatrix} L & d^{4}v & d^{4$$

Example Solution 4 :Least Square Method

$$EI\frac{d^4v}{dx^4} - q = 0$$
 Equilibrium



Error should be minimum

$$\widetilde{v} = a \sin\left(\frac{\pi}{L}x\right)$$
 Assumption

$$EI\frac{d^4\widetilde{v}}{dx^4} = EIa\left(\frac{\pi}{L}\right)^4 \sin\left(\frac{\pi}{L}x\right)$$

Estimated

Example Solution 4 :Least Square Method

$$EI \frac{d^4 \widetilde{v}}{dx^4} - q = EIa \left(\frac{\pi}{L}\right)^4 \sin \left(\frac{\pi}{L}x\right) - q$$

$$\Pi = \int_{x} \left\{ EIa \left(\frac{\pi}{L} \right)^{4} \sin \left(\frac{\pi}{L} x \right) - q \right\}^{2} dx$$

Error

Squared Error

In order to expect the Error minimized, an appropriate value for a must be

$$\left| \frac{\partial \Pi}{\partial a} = \frac{\partial}{\partial a} \left| \int_{x} \left\{ EIa \left(\frac{\pi}{L} \right)^{4} \sin \left(\frac{\pi}{L} x \right) - q \right\}^{2} dx \right| \right|$$

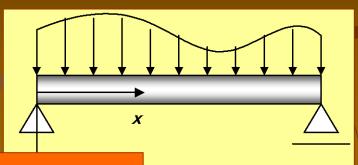
Example Solution 4 :Least Square Method

$$\frac{\partial \Pi}{\partial a} = \frac{\partial}{\partial a} \left[\int_{x} \left\{ EIa \left(\frac{\pi}{L} \right)^{4} \sin \left(\frac{\pi}{L} x \right) - q \right\}^{2} dx \right]$$

$$\frac{\partial \Pi}{\partial a} = 2 \int_{x} \left\{ EIa \left(\frac{\pi}{L} \right)^{4} \sin \left(\frac{\pi}{L} x \right) - q \right\} EI \left(\frac{\pi}{L} \right)^{4} \sin \left(\frac{\pi}{L} x \right) dx = 0$$

$$\frac{\partial \Pi}{\partial a} = \int_{x} \left\{ EIa \left(\frac{\pi}{L} \right)^{4} \sin \left(\frac{\pi}{L} x \right) - q \right\} \sin \left(\frac{\pi}{L} x \right) dx = 0$$

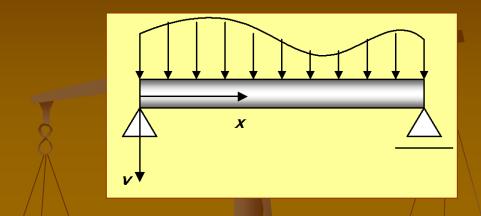
$$\widetilde{v} = a \sin\left(\frac{\pi}{L}x\right)$$
 Assumption



$$\delta v = \sin\left(\frac{\pi}{L}x\right)$$

$$EI\left(\frac{\pi}{L}\right)^{4} \int_{x} \left\{ a \sin\left(\frac{\pi}{L}x\right) \right\} \delta v dx - \int_{x} q \delta v dx = 0$$

Example Solution 4 :Least Square Method

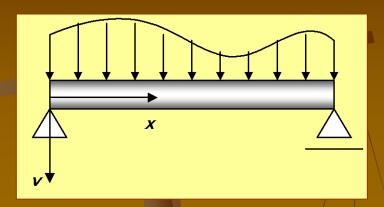


$$\left| \frac{\partial \Pi}{\partial a} = \int_{x} \left\{ EIa \left(\frac{\pi}{L} \right)^{4} \sin \left(\frac{\pi}{L} x \right) - q \right\} \sin \left(\frac{\pi}{L} x \right) dx = 0$$

$$EI\left(\frac{\pi}{L}\right)^4 a \int_{x}^{4} \left\{ \sin\left(\frac{\pi}{L}x\right) \right\}^2 dx - \int_{x}^{4} q \left\{ \sin\left(\frac{\pi}{L}x\right) \right\} dx = 0$$

Example Solution 5 : Galerkin Method 1

$$\int_{x} \left\{ EI \frac{d^{4}v}{dx^{4}} - q \right\} \delta v dx = 0$$



Starting Equation is Same

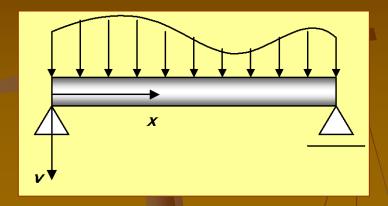
$$\tilde{v} = a \sin\left(\frac{\pi}{L}x\right)$$
 Assumption

$$\delta v = \sin\left(\frac{\pi}{L}x\right)$$

Weighting Function

Example Solution 5: Galerkin Method 2

$$\int_{x} \left\{ EI \frac{d^4 v}{dx^4} - q \right\} \delta v dx = 0$$



Starting Equation is Same

$$\left| \int_{x} \left\{ EI \frac{d^{4}v}{dx^{4}} - q \right\} \delta v dx = EI \frac{d^{3}v}{dx^{3}} \delta v \right|_{0}^{L} - \int_{x} EI \frac{d^{3}v}{dx^{3}} \frac{\partial \delta v}{\partial x} dx - \int_{x} q \delta v dx$$

$$= EI \frac{d^3v}{dx^3} \delta v \Big|_0^L - EI \frac{d^2v}{dx^2} \frac{\partial^2 \delta v}{\partial x^2} \Big|_0^L + \int_x EI \frac{d^2v}{dx^2} \frac{\partial^2 \delta v}{\partial x^2} dx - \int_x q \delta v dx$$

Example Solution 5 : Galerkin Method 2

$$= EI \frac{d^3v}{dx^3} \delta v \bigg|_0^L - EI \frac{d^2v}{dx^2} \frac{\partial^2 \delta v}{\partial x^2} \bigg|_0^L + \int_x EI \frac{d^2v}{dx^2} \frac{\partial^2 \delta v}{\partial x^2} dx - \int_x q \delta v dx$$

$$= \int_{x} EI \frac{d^{2}v}{dx^{2}} \frac{\partial^{2} \delta v}{\partial x^{2}} dx - \int_{x} q \delta v dx = 0$$

$$\widetilde{v} = ax^3 + bx^2 + cx + d$$
 $\widetilde{v} = ax^3 + bx^2 + cx$

$$\tilde{v} = aL^3 + bL^2 + cL = 0$$
 $c = -aL^2 - bL$

$$\widetilde{v} = ax^3 + bx^2 + cx$$

$$c = -aL^2 - bL$$

$$\widetilde{v} = ax(x^2 - L^2) + bx(x - L)$$

Example Solution 5: Galerkin Method 2

$$\int_{x} EI \frac{d^{2}v}{dx^{2}} \frac{\partial^{2} \delta v}{\partial x^{2}} dx - \int_{x} q \delta v dx = 0$$

$$\widetilde{v} = ax(x^2 - L^2) + bx(x - L)$$

$$\frac{d\widetilde{v}}{dx} = 3ax^2 + 2bx + c$$

$$\delta v_1 = x \left(x^2 - L^2 \right)$$

$$\frac{d^2\delta v_1}{dx^2} = 6x$$

$$\left| \frac{d^2v}{dx^2} = 6ax + 2b \right|$$

$$\delta v_2 = x(x-L)$$

$$\left| \frac{d^2 \delta v_2}{dx^2} = 2 \right|$$

Example Solution 5 : Galerkin Method 2

$$\int_{x} EI \frac{d^{2}v}{dx^{2}} \frac{\partial^{2} \delta v}{\partial x^{2}} dx - \int_{x} q \delta v dx = 0$$

$$\frac{d^2 \delta v_1}{dx^2} = 6x$$

$$\frac{d^2v}{dx^2} = 6ax + 2b$$

$$\delta v_1 = x(x^2 - L^2)$$

$$\delta v_2 = x(x - L)$$

$$\delta v_1 = x(x^2 - L^2)$$

$$\frac{d^2\delta v_2}{dx^2} = 2$$

$$\int_{x} \{EI(6ax + 2b)6x\} dx - \int_{x} \{qx(x^{2} - L^{2})\} dx = 0$$

$$\int_{x} \{EI(6ax + 2b)2\} dx - \int_{x} q\{x(x-L)\} dx = 0$$

Example Solution 5: Galerkin Method 2

$$EI\{12aL^{3} + 6bL^{2}\} = \frac{L^{4}}{4}q^{4} - \frac{L^{4}}{2}\}$$

$$EI\{6aL^{2} + 4bL\} = \frac{L^{3}}{6}q^{3} - \frac{L^{3}}{2}\} = 0$$

$$b = \frac{qL^{2}}{24EI}$$

$$\tilde{v} = \frac{qL^2}{24EI}x(x-L)^{3}v = \frac{qL^4}{96EI} = 0.0104166\frac{qL^4}{EI}$$

$$\frac{5}{384} \frac{qL^4}{EI} = 0.01302 \frac{qL^4}{EI}$$

Example Solution 5 : Galerkin Method 3

$$\widetilde{v} = ax^3 + bx^2 + cx + d$$

$$\widetilde{v} = ax^3 + bx^2 + cx + d$$

$$\widetilde{v} = d = \widetilde{v}_1$$

$$\frac{d\widetilde{v}}{dx} = 3ax^2 + 2bx + c$$

$$\widetilde{v} = d = \widetilde{v}_1$$

$$\widetilde{v} = aL^3 + bL^2 + cL = 0 = \widetilde{v}_2$$

$$c = -aL^2 - bL = \theta_1$$

$$3aL^2 + 2bL + c = 2aL^2 + bL = \theta_2$$

$$a = \frac{\theta_1 + \theta_2}{L^2}$$

$$b = \frac{-(2\theta_1 + \theta_2)}{L}$$

$$\widetilde{v} = \left\{ \frac{x^3}{L^2} - 2\frac{x^2}{L} + x \right\} \theta_1 + \left\{ \frac{x^3}{L^2} - \frac{x^2}{L} \right\} \theta_2$$

Example Solution 5: Galerkin Method 3

$$\widetilde{v} = \left\{ \frac{x^3}{L^2} - 2\frac{x^2}{L} + x \right\} \theta_1 + \left\{ \frac{x^3}{L^2} - \frac{x^2}{L} \right\} \theta_2$$

$$\frac{d^2\tilde{v}}{dx^2} = \left\{ 6\frac{x}{L^2} - 4\frac{1}{L} \right\} \theta_1 + \left\{ 6\frac{x}{L^2} - 2\frac{1}{L} \right\} \theta_2$$

$$\int_{x} EI \frac{d^{2}v}{dx^{2}} \frac{\partial^{2}\delta v}{\partial x^{2}} dx - \int_{x} q \delta v dx = 0$$

Example Solution 5 : Galerkin Method 3

$$\left| EI \left\{ \frac{4}{L} \theta_1 + \frac{2}{L} \theta_2 \right\} - \left\{ \frac{L^2}{12} q \right\} = 0 \right|$$

$$EI\left\{\frac{2}{L}\theta_{1} + \frac{4}{L}\theta_{2}\right\} - \left\{-\frac{L^{2}}{12}q\right\} = 0$$

$$EI\frac{6}{L}\theta_1 = \left\{\frac{3L^2}{12}q\right\}$$
 $\theta_1 = \frac{qL^3}{24EI}$ $\theta_2 = -\frac{qL^3}{24EI}$

$$\theta_1 = \frac{qL^3}{24EI}$$

$$\theta_2 = -\frac{qL^3}{24EI}$$

Example Solution 5 : Galerkin Method 3

$$\widetilde{v} = \left\{ \frac{x^3}{L^2} - 2\frac{x^2}{L} + x \right\} \theta_1 + \left\{ \frac{x^3}{L^2} - \frac{x^2}{L} \right\} \theta_2$$

$$\theta_1 = \frac{qL^3}{24EI} \middle| \theta_2 = -\frac{qL^3}{24EI} \middle|$$

$$\widetilde{v} = \left\{ \frac{L}{8} - \frac{L}{2} + \frac{L}{2} \right\} \theta_1 + \left\{ \frac{L}{8} - \frac{L}{4} \right\} \theta_2 = \frac{qL^4}{96EI}$$

$$v = \frac{qL^4}{96EI} = 0.0104166 \frac{qL^4}{EI} = \frac{5}{384} \frac{qL^4}{EI} = 0.01302 \frac{qL^4}{EI}$$

$$\frac{5}{384} \frac{qL^4}{EI} = 0.01302 \frac{qL^4}{EI}$$

Mechanics of Thin Structure

What you learned are;

Introduction for Linear Elasticity
Stress and Strain with 3D General Expressions
Plane Stress and Plane Strain
Principle of Energy
Principle of Virtual Work
Calculus of Variations
Theory of Beams
Theory of Plates