


Mechanics of; Thin Structure

What you learned are;

Introduction for Linear Elasticity

Stress and Strain with 3D General Expressions
Plane Stress and Plane Strain

Principle of Energy

Principle of Virtual Work

Calculus of Variations

Theory of Beams

Theory of Plates
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Pure bending problem

Compatibility
Energy.

Energy should be Minimum,
so that Energy is calcualted
such as;




Example
RPure bending problem

Energy for'section
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Pure bending problem

Potential Energy.

You have the Functional !!

I1=J|v|= j(l) F(X,v,Vv'")dx
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RPure bending problem

You have the Functional !!

I1=J|v|= I(I) F(X,v,Vv'")dx

Apply the Euler’s Equation

8_F_i oF d2 8F
ov dx 8v' dx av
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—q+—(EN")=E
| dx2

Governing Equation for pure bending beam
from the Euler’s Equation
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Boundary Condition
See eq. (6-31)
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Mechanical
Boundary
Condition

Geometrical
Boundary
Condition
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Example
Solution 1 : Direct:Integration
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Example
Solution 2 : Virtual \WWork

o d*v _q=0 Equilibrium

dx*

v

No Energy produced if the Equilibrium is satisfied
d*v Virtual Displacement
[{El = —qpdudx =0
Virtual ' Work

What is the requirement for the virtual
displacement?

dx

X
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Virtual Displacement

N =SIn ij
L

El [%fa { %{1—cos(2%xj}dx— { q{sin(% xj}dx -0
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Example
Solution 2 modified

T { {am sin(m—f xj}&/dx - { qévdx = 0

Virtual Displacement




Example
Solution 2 modified

% E| (m—fT { {am sin(m—ljz xj}&vdx - { qévdx =0

It’s same as the solution introduced for Plate Theory



Example
Solution 3 :Point.Collocation

Assume you would like to have the value at the
center

N =0 % Dirac Delta Function
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Example
Solution 4 :lLleast: Square Method

- d4v 0 Equilibrium
o

Error should be minimum

Estimated
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Error

Squared Error

In order to expect the Error minimized,
an appropriate value for a must be
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Example
Solution 5 :Galerkin Method 2

dx*

X

jElM—q}&dx_El—&/ jEl Va&/dx jq&/dx
0
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Solution 5 :Galerkin Method 2

V=axX+bx*+cx+d BV = ax® +bx® +cx
Vv=al’+bl?+cL=0Mc=-al’-bL

vV

ax
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[ {E1(6ax+2b)2Jdx — [ g{x(x — L)jdx = 0

X
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Solution 5 :Galerkin Method 3

V = ax® 2 dv
V=ax"+bx"+Ccx+d@WV 02 op
~ ~ dx

v=d=V;
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